
1

A Flexible System for Conversion of DBF Tables into SAS®

Mel Widawski, UCLA, Los Angeles, California

ABSTRACT

The aim of this system is to import the tables from a dBase®

database system as automatically as possible under adverse
conditions. When the entry system is constantly changing and in
control of another, you need a convenient way to bring in all
available tables. Besides doing this, the system allows for the
substitution of variable names, special transformations, and
conversion of look-up tables to SAS® formats. It is completely
modular, and allows for an environment where multiple
programmers may be working on importing the same data. The
program runs regardless of which modules are present. Switching
from a test environment to the production, and back, requires only
a single string change in the driver. You may also produce a
mapping of variables to formats across data sets.

INTRODUCTION

Perhaps, if I let you know the situation that produced this system,
you will understand the need for it. We needed to import all of the
tables in a database that was maintained by a very busy
individual, who was hard to reach. The database project started
before the involvement of anyone familiar with statistical package
programming, and this created a series of problems. The
database was under construction and in flux; this meant that
tables could appear, change names, change structure, and
disappear at any moment. But research had to begin due to
deadlines, and the database was the only source of information
vital to the research. In addition, the database was extensive, as it
consisted of around 35 tables at any given time. A number of the
tables contained labeling information for other tables. There were
three of us working on the project and eight additional
programmers, statisticians, and researchers waiting for the data.
The data had to be imported quickly. We would defer niceties,
such as renaming variables to give them more reasonable names
and transforming variables, and do them as analysis proceeded. I
had the responsibility of organizing the system and creating any
tools that were necessary to make it work.

The process of importing the data from DBF type files is relatively
easy using SAS/ACCESS® to convert the tables to SAS data sets.
But who wants to do 35+ cuts and pastes to do the job and end
up with a program yards long? A macro would seem to be the
appropriate solution. But what do we do about the transformations
and renames necessary for each database table? These are
specific to the specific tables. I have no particular fondness for
looking through many lines of repetitive code to determine if
transformations had been done for a table.

I decided the answer was a system that would automatically pick
up any tables available and import them using any
transformations and renames available. It would allow for small
modules with this information so programmers could work on
different parts of the problem simultaneously. For success I had to
organize the pieces of the programs in directories and let the
macro do the work. I no longer had to scan directories visually to
see the changes, nor spend my time cutting and pasting lists or
typing names. All I had to do was to write a few macros and a
driver, and that is a lot more fun.

The entire system consists of a group of macros, a program to
drive the macros, files containing portions of code, and a directory
structure to hold it all together. The directory structure is of
primary importance, so that will be discussed first. The driver
code logically comes next, followed by the macros. The final
pieces of the system are the program files specific to each table
and grouped by function. Though not part of the system, I include
a section on “Avoiding Problems” which presents guidelines to the
database programmer. If followed, these guidelines will simplify
your job greatly.

One key to the process was a macro to get a list of files of a given
extension from a directory by just supplying directory pointers.
This macro, called GETLIST, is paper 82 in a Coder’s Corner
session at SUGI 23 called, “A General Purpose Macro for
Obtaining a List of Files: Plus Macro Programming Techniques.”

It occurred to me that other people could benefit from this system
both by using the programs I developed and by adapting the
techniques and programs to other uses. Due to space limitations I
will present only snippets of the programs in this article, but a
complete sample program will be available on request.

STRUCTURE

As I mentioned, the whole system is held together by the directory
structure. I hope the purpose of this structure will become obvious
as the structure is revealed. The DBF files should be stored in a
single directory. This is not entirely under your control, but since it
is human nature to save files for a project under a single directory,
you will probably not have to worry about it. By the way, I use the
terms folder and directory interchangeably. I may also refer to a
subdirectory when trying to indicate a directory or folder contained
in another directory.

At this time I would like you to look at a diagram of the directory
structure I am suggesting. You will find this diagram below.

The Directory Structure

DBF

PREP MACROS RENAMES TRANSF EXCEPT FMATS DS

TEST

MACROS RENAMES TRANSF EXCEPT FMATS DS

PROD

IMPORT

Data WarehousingData Warehousing

2

This structure allows for ease of programming, order, the
cooperation of multiple programmers, and quick location of
program components. It also avoids the risk of accidentally
deleting code. Notice that the TEST and PROD directories are
nearly identical. I will now discuss the purpose of each directory.

DBF The DBF directory floats off by itself, and it
contains the DBF files you are trying to import. It
may exist on another machine, on a file server, or
on your hard drive. This is the directory that you
have no control over.

IMPORT You may want to name it after the project you are
working on instead of IMPORT. I have given it
the generic name IMPORT here as the system is
used to import the database. The only file I like
to store under this directory is a “read me” file
containing information about the project. The
IMPORT directory contains two main
subdirectories TEST and PROD.

PROD & TEST With two exceptions the PROD directory mirrors
the TEST directory in structure. The production
directory, PROD, contains only fully tested code,
while TEST contains code modules that are still
under development. This scheme allows you to
run the system under PROD and always get
expected results. PROD and TEST both contain
the following directories: MACRO, RENAMES,
TRANSF, EXCEPT, FMATS, and DS. I store the
driver programs at this level; with production
drivers stored directly in PROD, and test drivers
in TEST. All of the directories except DS contain
SAS programs or program segments, while DS
contains the SAS data sets produced by the
system. It is possible to store the production
output data sets anywhere you find convenient.
Occasionally programs run under TEST will fail,
and that is why the test system is kept separate.
In a later section on “Driver Programs,” I will
show you a simple way to switch between TEST
and PROD.

MACROS As the name implies, this directory contains
macros. The macros in this library perform
various tasks. These are the workhorses of the
system performing the repetitive tasks and
freeing you to write macros or analyze the data.
The primary macro uses the ACCESS procedure
to import the files, and performs transformations
on the variables as necessary. More information
on these macros will be presented in the section
below titled “Macros and Macro Programming.”

RENAMES Files in this folder contain sections of code used
for renaming variables in the ACCESS procedure
in the DBFACC macro. Each file in this directory
will have the same name as the DBF file it
applies to. Thus, all renames for person.dbf will
be in person.sas in the RENAMES directory. It is
not necessary to have a rename file for every
table in the DBF directory. In fact, you should
only include a file if you need to rename
variables. If you want to see if any renaming was
done for a data set, you simply look at the list of
the files in RENAMES. This can be done using
file manager or explorer.

TRANSF DATA step transformations reside in the
TRANSF folder. Once again each set of
transformations has the same name as the table
it applies to, but these have the sas extension.
These are rather small files unless there are a
large number of transformations to perform. Only
create a TRANSF file if variables in a table
require transformations.

EXCEPT Files in this directory contain code used by the
FMAT macro to provide exceptions to the rule
that format names match the variables they are
used with. This is necessary when two or more
variables in the file have the same format applied
to them. Here again, the names of the files match
the names of the database tables. You will soon
see how this is used to automatically bring in the
code at the appropriate time.

FMATS Files in this directory contain code used in a
FORMAT statement to connect the value labels
to the variables. It is automatically generated by
the FMAT macro based on the variable names
and values in the CNTL data sets, as long as the
variable names match the format names.
Exceptions to this rule are supplied in the
EXCEPT directory. The names of the files in this
directory match the names of the tables.

DS The products of your labors, these are the SAS
data sets created by running your programs and
macros. They have the same filenames as the
original tables, but they have the sd2 extension.
You may want to keep a subdirectory under DS
to hold the output data sets created by the
CONTENTS procedure. These files have a
number of purposes and as they are SAS data
files this would be the logical place to store them.

PREP I keep the PREP subdirectory only in the TEST
directory, and I use it to hold programs I run to
determine information about the database. I find
it useful to have a directory like this, but it is not
required for the system to work.

DRIVER PROGRAMS

Driver programs are SAS programs that set up variables, do jobs
that only need to be done once, and call macros. I store them in
the TEST and PROD directories but you could store them in a
separate directory if you wish

AUTCONV The main driver in the system, it calls the macros
that create SAS data sets out of DBF files. This
driver calls the DBFACC macro and the GETLIST
macro to set up lists of files that DBFACC needs.
Alternately, the calls to GETLIST can be
generated from within the DBFACC macro.

FMATDRV The driver creates CNTL format data sets, and
writes names of variables and formats for a
FORMAT statement. It then combines the
separate format control data sets into a single
CNTL data set. And it creates a FORMAT catalog
containing labeling information for the entire
database.

FMATCHKD This program calls the macro that generates
output showing the relationship between formats
and variables. It also calls the GETLIST macro a
number of times to create lists needed by the
FMATCHK macro. You use it to aid in
programming the value label control data sets.
For this reason it probably belongs in the TEST
directory.

VMATCHD This program calls the macro that generates
output listing all variables for all the data sets in a
project. It allows you to tell at a glance which
variables match which files. It is useful in
determining keys for merging the data sets.

Data WarehousingData Warehousing

3

The Auto Convert Driver

I will use the AUTOCONV driver as a model to demonstrate how
the system works. It has three main functions. First it establishes
the macro variables that define the environment. Next it calls
GETLIST to create the lists of data sets in the DBF, RENAMES,
and TRANSF directories. Finally, it calls the DBFACC macro that
loops through the tables in the database and imports them into
SAS. Here is a stripped down version of this driver, as I have
stripped out the comments for brevity.

�
�

�
�

�
�

�����'HILQH�WKH�(QYLURQPHQW��������

�
�

�
�

�
�

�OHW�HQYUQ WHVW�

�
OHW�HQYUQ SURG�

RSWLRQV�0$8726285&(

����VDVDXWRV ��G�?GJ?VDV?WHVW?PDFURV���VDVDXWRV�

����05(&$//�

�OHW�PDMSDWK G�?LPSRUW�

�OHW�GLU 	PDMSDWK�?	HQYUQ�?���
�GLU��VDV�ILOHV�
�

�OHW�VDVGLU 	GLU�?GV?���������
�GLU��VG��ILOHV�
�

�OHW�GEIORF S�?GEI?�����������
�GLU��GEI�ILOHV�
�

�
�

�
�

�
�

�����PDFUR�FDOOV�KHUH������

�
�

�
�

�
�

�JHWOLVW��LQ��	GLU�UHQDPHV�	GLU�UHQDPHV�VDV��

UXQ�

�JHWOLVW��LQ��	GLU�WUDQVI�	GLU�WUDQVI�VDV��

UXQ�

�JHWOLVW��LQ��	GEIORF��	GLU�GEIILOV�GEI��

UXQ�

�OHW�QXPIV 	WQXPIV�

UXQ�

�GEIDFF��	GEIORF�	GLU�	VDVGLU�GEIILOV�

���������	UHQDPHV�	WUDQVI�	QXPIV���

UXQ�

You can change from the test environment to the production
environment easily; all you have to do is simply move the asterisk
from one of the two %LET statements to the other in the driver
above.

You can either include the code in the driver with a %INCLUDE
statement or you can use an OPTION statement to establish a
SASAUTOS library as I have here.

I always like to define things that change at the beginning of any
program. This allows me to make one change at the top and
avoid searching the whole program for every use of that
specification. Paths, directory names, and file names are
examples of things that change readily. This program is short, but
it would be reasonable to string together a number of drivers, and
at that point the program is long enough to make this practice
worthwhile.

All you have to do is point to the appropriate directories and you
are in business. The GETLIST macro makes a list of the files,
and the DBFACC macro uses the lists to import the data. The
DBFACC only needs the number of files for the dbf directory so
that is the only one captured by this driver. The beauty of this is
that the programs tend to be in short manageable chunks.

MACROS AND MACRO PROGRAMMING

Macros are the workhorses of the system; they take on the
repetitive tasks and keep chugging away until they are done.
They make programming worthwhile. I will present a discussion of
the main macros in the system, what they are good for, and the
information you need to supply them. Then I will present the
DBFACC macro as an example of how they work.

DBFACC This macro creates SAS data sets out of DBF
files. It does it over and over until all of the tables
are converted. It will be discussed in detail below,
but the following is the macro call.

�GEIDFF��ORFBGEIBILOHV��GLUBSURJBVHJV�

VDVBGLUBRXWBILOHV�

PDFURBYDUQDPHBGEIBOLVW�

UHQDPHVBILOHBOLVW��WUDQVIBILOHBOLVW�

QXPBGEIBILOHV��

GETFILES It does not do repetitive actions but takes the
housekeeping burden off of the programmer’s
shoulders. Regardless of the flux of DBF tables,
transformations, or renames; this macro relieves
the programmer from the task of painstakingly
comparing names and typing.

�JHWILOHV��LQBILOHUHI��GLUBLQSXW�

LQSXWBVXEBGLU��GLUBRXWSXW�

PDFURBYDUQDPHBIRUBOLVW��ILOHBH[W��

FMAT This macro creates CNTL format data sets, and
writes names of variables and formats for a
FORMAT statement. It then combines the
separate format control data sets into a single
CNTL data set. And it creates a FORMAT catalog
containing labeling information for the entire
database. It does this by combining the various
look-up data sets, and comparing them with the
output of the CONTENTS procedure. It self types
the variables using information from contents.

�IPDW�OLVWBGDWBILOHV��QXPBGDWBILOHV��IPDWBIOV�

QXPBIPWBILOHV��QDPHBFQWOBGV��VDVBGLU�

OLVWBDOOBILOHV��QXPBDOOBILOHV�

OLVWBH[FHSWBILOHV��

FMATCHK This macro generates output showing the
relationship between formats and variables. You
use the output as an aid in programming. You
can see the connections between the formats
and the variables. You do have to read the output
to determine what exceptions are needed.

�IPDWFKN��OLVWBGDWBILOHV��QXPBGDWBILOHV�

IPDWBIOV��QXPBIPWBILOHV��VDVBGLU�

OLVWBDOOBILOHV��QXPBDOOBILOHV�

OLVWBH[FHSWBILOHV���

VMATCH This macro generates output listing all variables
for all the data sets in a project. It allows you to
tell at a glance which variables match which files.
It is useful in determining keys for merging the
data sets. You pass the output on to the analysts,
or use it yourself for combining files.

�YPDWFK��VDVBGLU��OLVWBDOOBILOHV�

QXPBDOOBILOHV��

Data WarehousingData Warehousing

4

More on the DBFACC Macro

Here is a stripped down copy of the DBFACC macro for reading
DBF tables and creating SAS data sets. I have stripped it of most
comments and some of the PUT statements that give me step-by-
step information on how the macro is performing.

�PDFUR�GEIDFF��GEIORF��GLU��VDVGLU��GEIILOV�

���������������UHQDPHV��WUDQVI��QXPIV���

�
�

�
�

�
�

�������������'%)$&&���������������

�
�

�
�

�
�

�OLEQDPH�VDVRXW��	VDVGLU��

��ORFDO�QXPI�IQDPH�

��GR��QXPI ���WR�	QXPIV���
�����
�

�������OHW�IQDPH �VFDQ�	GEIILOV�	QXPI��VWU�����

�������SXW�ILOH�LV�	IQDPH�

������SURF�DFFHVV�GEPV GEI�

��������FUHDWH�ZRUN�	IQDPH��DFFHVV�

���������
�&UHDWH�$FFHVV�'HVFULSWRU�IRU��GEI�
�

��������SDWK �	GEIORF�	IQDPH��GEI��

��������DVVLJQ \HV�

����������������������
�����
�

���������
��UHQDPHV�FRQGLWLRQDOO\�LQFOXGHG��
�

���������LI��LQGH[��VWU��	UHQDPHV���

��������������������VWU��	IQDPH���!�

�������������WKHQ��GR�����
�����
�

�����������������LQFOXGH

��������������������	GLU�UHQDPHV?	IQDPH��6$6��

�������������HQG�

����������������������
�����
�

��������FUHDWH�ZRUN�	IQDPH��YLHZ�

���������
�&UHDWH��GEI�9LHZ������
�

����������VHOHFW�DOO�

����������OLVW�YLHZ�

���������UXQ�

���������TXLW�

����������������������
�����
�

�������
�

�
�

�������
�

��FUHDWHV�VDV�GDWD�VHWV��

�
�

�������
�

��ZLWK�WUDQVIRUPDWLRQV���

�
�

�������
�

�
�

��������GDWD�VDVRXW�	IQDPH�

��������������VHW�ZRUN�	IQDPH�

������������
��WUDQVIRUPV�FRQGLWLRQDOO\���
�

������������
��LQFOXGHG�KHUH��������������
�

����������������������
�����
�

������������LI��LQGH[��VWU��	WUDQVI���

�����������������������VWU��	IQDPH���!�

��������������WKHQ��GR�

�����������������LQFOXGH

�������������������	GLU�WUDQVI?	IQDPH��6$6��

��������������HQG�

��������UXQ�

��HQG�����������
���HQG�RI�'R������
�

�PHQG�GEIDFF����
���HQG�RI�0DFUR���
�

I placed bold numbers in the above example to aid in the
discussion. The macro is one large do loop that executes once for
each DBF table in the target directory (1). The %SCAN macro
function extracts each filename from the macro variable using a
“blank” delimiter and a pointer that it increments each time
through the loop.

The macro uses the ACCESS procedure to create a VIEW
descriptor of each table. SAS variable names are assigned. The
program checks to see if there is a rename data set associated
with the DBF table, and if there is, brings the code into the
ACCESS procedure (2). The %INDEX macro function checks the
list of rename data sets to see if the current table (&fname)
matches any data set in the RENAMES folder. Both the list of
renames (&rename) and the current table (&fname) are enclosed
in a %STR function and bracketed by blanks, above (3). This is so
that the program can differentiate between filenames like PT and
PTMED. Without this, the renames for PTMED could be brought
in when the current table was PT.

At the end of the ACCESS procedure a VIEW is created. This is
not yet a SAS data set, though the view can be used as if it were
one. The SAS data set is created in the DATA step that follows,
and this allows for the transformations. While a VIEW might
suffice and certainly saves on storage, researchers need a stable
data set to work with, and the data needs to be frozen at a time so
results can be compared. Mission accomplished! The business of
importing the DBF files is done. In the next section I will present
information on the code for customized renames and
transformations.

CODE SEGMENTS

These files contain pieces of code rather than whole programs.
They provide the exceptions when importing data or creating
formats. These compact single-purpose units are easy to maintain
and update. You can tell at a glance if something is missing.
These are the task- and target-specific workers that allow for the
customization of the system. If they are missing you still get files,
but with less readable variable names, and necessary
transformations left to be done.

RENAMES

To reiterate, files in this folder contain sections of code used for
renaming variables in the ACCESS procedure of the DBFACC
macro. They follow the naming conventions of the database. It is
most convenient to rename variables in the ACCESS procedure
since at that point long names are still available and so the
variables can be easily identified. Each file in this directory will
have the same name as the DBF file it applies to. Thus all
renames for person.dbf will be in person.sas in the RENAMES
directory. If I want to see if any renaming was done for a data set,
I would simply look at the list of the files in RENAMES. This can
be done using file manager or explorer.

Variable or field names in DBF files can have as many as ten
characters. SAS can only tolerate eight-character variable names.
When SAS/ACCESS encounters a variable name that is greater
than eight characters, it truncates the name. If that truncation
matches one already in the system, then SAS/ACCESS does a
further truncation and appends a number to the name. That
number is incremented through the data set, and not just for the
specific variable root. For example, consider the names:
“finetimeav”, “finetimemv”, and “finetimevf”. The first variable
becomes “finetime”, the second variable would also, but there is
already one in the data set. Now since there are already four
other names that matched after truncation in the data set, the
second variable becomes “finetim5” even though it is only the
second “finetime”. You can live with this, but more reasonable
names would be better. Fortunately, the original name is saved in
the variable label. The following is an example of some rename
code for one of the tables.

UHQDPH�ODWQF\BPLQ����ODWQF\PQ

����������ODWQF\BPD[����ODWQF\P[�

Data WarehousingData Warehousing

5

I think that this would be preferable to “latncy_m” and “latncy_8”.
Since the rename command is in SAS/ACCESS you can use the
long form of the name for these renames.

TRANSF

DATA step transformations reside in the TRANSF folder. They
are brought in by the second step of the DBFACC macro. It
doesn’t matter if none exists for a table — the program still works.

Some of the files were actually look-up tables to supply labels.
The following is the transformation to prepare it to become a
control data set readable by the FORMAT procedure as a
CNTLIN= data set. This module changes the names to those
recognized by SAS. It creates a truncated version of the names in
case they are formatting character variables. “Start” and “label”
are variables to define value formats for a control data set.

��
�

�
�

��
�

����WUDQVI�IRU�&2'(6�'%)���

�
�

��
�

�
�

����OHQJWK��W\SH�����VWDUW������IPWKROG���

������������ODEHO������FKUIPW����

����VWDUW FRGH�

����W\SH
�
�

����IPWKROG FRGHBW\S�

����FKUIPW IPWKROG�

����ODEHO PHDQLQJ�

����LI�IPWKROG
�

����������������WKHQ�SXW�

�EDG�IPWKROG�

�

������������������������IPWKROG �VWDUW �ODEHO ��

����LI�FRGH
�
�WKHQ�SXW�

�EDG�FRGH�

�

������������������������IPWKROG �VWDUW �ODEHO ��

����LI�ODEHO
�
�WKHQ�SXW�

�"ODEHO"���

�

������������������������IPWKROG �VWDUW �ODEHO ��

����LI�IPWKROGA
�
�

����LI�FRGHA
�
�

������
�

�
�

������
�

��FKDUDFWHU�IRUPDWV�

�
�

������
�

���PD[�OHQ�LV���!!��

�
�

������
�

�
�

����LI�VXEVWU�FRGHBW\S�����

�������LQ�
0$&+,1B
�
5($621B
�

����������WKHQ�VXEVWU�FKUIPW�����

������������������VXEVWU�IPWKROG������

����NHHS�W\SH�VWDUW�IPWKROG�ODEHO

���������RUGHU�FRGHBW\S�FKUIPW�

�SURF�VRUW�GDWD VDVRXW�	IQDPH�

������E\�FRGHBW\S�VWDUW�

�UXQ�

Since the formats for a given variable were not grouped together,
we sort the data set by “code_typ”, the original format name, and
by “start”, the value being labeled. There are no other statements
besides run following the transformation in the macro, so other
procedures like the SORT procedure could be used at that point.
This is another way to customize the system.

EXCEPT

The FMAT macro includes these exceptions while processing
CONTENTS procedure output in preparation for merging with the
format data sets. Thus, formats in the control data set are
automatically given appropriate type, and the format statements
are created correctly. Here is an example of matching three
variables in a data set to the appropriate format. The format is
SIDE_EFF, and the variables are SID_EFF1 through SIDE_EFF3.
This assures the creation of appropriate FORMAT statements,

which otherwise is accomplished automatically by the FMAT
macro.

��
�

�
�

��
�

�H[FHSWLRQV�IRU�IRUPDWWLQJ�

�
�

��
�

������IRU�';�'%)�����������

�
�

��
�

�
�

����LI�QDPH�LQ�
6,'(B()�
�
6,'(B()�
�
6,'(B()�
�

������������������������WKHQ�IPWKROG
6,'(B())
�

����LI�QDPH� �
)250
����WKHQ�IPWKROG
0('B)250
�

����LI�QDPH� �
5287(
���WKHQ�IPWKROG
0('B5287
�

An exception is also necessary when the name of the variable is
not the same as the format it needs. For example, FORM requires
the MED_FORM format.

AVOIDING PROBLEMS

I believe that prevention is better than long and tedious
programming solutions to problem data. With this in mind, I would
like to start out by presenting a list of guidelines for database
programmers whose data might have to be used for statistical
analysis later.

In order for the guidelines presented below to make sense, you
need to know how database programmers label values of
variables (fields). There are two main ways that database
programmers supply labels to the values of variables. The first
way uses a table that contains three variables like “name”, “code”,
and “label”. This corresponds to a CNTL data set produced by the
FORMAT procedure with the variables FMTNAME, START, and
LABEL. The other method database programmers use tables for
labeling is to create separate tables. These tables hold each set
of labels, and each table contains only value and label. The name
of the table is linked to the field being labeled. Both types of these
are called look-up tables.

Guidelines for Database Programmers

1. Confine variable (or field) names to eight characters or less.

2. If you are using look-up tables to supply labels to values,
and the variable names of one table are linked to the values
in a look-up table, then both the variable names and the
corresponding values should be identical and restricted to
seven characters in length.

3. If you are using look-up tables to supply labels, and the
variable names in one table are linked to the names of other
tables, then names of both should match. Also, please
restrict the length of variable names and corresponding table
names to seven characters.

4. If you have any of the above look-up tables and do not have
matching names, please maintain a table of
correspondence. And please keep the seven-character
length restriction.

5. Please avoid the use of memo fields, and use character
variables instead.

6. Please store all of the DBF files for your data base in the
same directory, and store only those files in that directory.

7. Please avoid changing the names of your tables and
variables.

8. If the records in some tables represent measurements on
the same people at different points in time, then please
include a date variable with the same name in each table.
Also, the date recorded in those tables should be the date of
the event, and not the date it was recorded.

Data WarehousingData Warehousing

6

Explanation of Guidelines

The purpose of the first guideline should be obvious, SAS variable
names are restricted to eight characters in length.

Guidelines two through four are an easy way to ensure that
format names will be the proper length even if the values labeled
are character values. Remember to leave space for the dollar sign
for character formats. If the format names are identical to the
variable names, then you have an easy way to match them up.

Memo fields are not read by the ACCESS procedure. Attempts to
bring them in with one of the available transfer packages require
way too much post-processing.

You need to be able to locate the tables (point 6); consistency
makes your job easier (point 7); and the data have to be
meaningful (point 8).

There are probably more rules that should be included; but if the
database programmer follows these simple rules, then importing
the data becomes much more straightforward. Each deviation
from these rules may make you produce hundreds of lines of
code.

CONCLUSION

This system provides for automatic importing of DBF type files
into the SAS system. Even though the system is automatic,
customization is possible through the use of rename,
transformation, and exception folders. If a file is stored in one of
those folders the code will be automatically include in the program
at the appropriate point. This has the advantage of reducing the
amount of storage the system needs.

Since the code pertaining to each DBF table is stored in a
separate file, this system supports a multi-programmer
environment. A single programmer also benefits from having
easily-locatable, small, and manageable chunks of code.

Maintaining separate test and production systems in parallel
allows an ongoing programming effort to proceed with no loss in
the ability to update the data. You don’t have to worry when the
test system temporarily breaks, because the production system is
always ready to deliver the best data currently available. If a
transformation module is missing, the program will still work. If an
obsolete module is still there, with no associated table, the
program will still work. This is not true of the single hard coded
program, where an attempt to read a data set that is no longer
there will crash the program. Consider the alternative of having to
search through reams of code to find and remove the offending
code.

You can create one large program with much repetitive code, but I
wouldn’t want to have to create or maintain it. In fact, if I had to
create it to demonstrate my point, I would use a macro to put the
pieces together.

I would like to summarize some of the positives and negatives of
this system of programming.

Positives 1) A modular programming environment
2) Ease of use with multiple programmers
3) Flexible programs that adapt automatically
4) Removes much of the mundane work
5) Less chance of typing over other code
6) More robust with respect to errors
7) Module programming can be done by less

experienced programmers
8) Automatic data-driven programs

Negatives 1) Chance of saving over the wrong module –
 they are named the same in each file
2) Requires the adherence to the structure
3) More files to look through when checking
 all the code

REFERENCES

SAS Institute Inc. (1990), SAS® Guide to Macro Processing,
Version 6, Second Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1993), SAS® Companion for the Microsoft
Windows NT Environment, Version 6, First Edition, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1993), SAS/ACCESS® Software for PC File
Formats: Reference, Version 6, First Edition, Cary, NC: SAS
Institute Inc.

ACKNOWLEDGMENTS

A large portion of this system was developed while working for
Dr. Donald Guthrie, UCLA. I would like to thank him for the
opportunity to work on this project and the support he gave. This
work benefited from discussions with Scott Komo, and Aaron
Kaufman, both of UCLA. I would like to thank Barbara Widawski,
without whose editing this manuscript would be illegible.

CONTACT INFORMATION

Mel Widawski
Office of Academic Computing
UCLA
Los Angeles, CA

Please contact through email at:

mel@ucla.edu

SAS and SAS/ACCESS are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Data WarehousingData Warehousing

	Main TOC

